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Purpose of review

This review is an up-to-date analysis of the genetic diagnosis and therapeutic strategies
for limb girdle muscular dystrophies (LGMDs).

Recent findings

LGMDs are an example of both clinical and genetic heterogeneity. Clinically, by the
description of non-LGMD phenotypes associated with LGMD genes and of LGMD
phenotypes associated with originally non-LGMD disease genes; and genetically, by
the description of new LGMD genes that further increase the diagnostic complexity.
Moreover, new powerful approaches for DNA analysis, such as exome sequencing,
promise to revolutionize the field of heterogeneous genetic diseases, also providing
information about the true penetrance of LGMD mutations. The recent inputs on novel
pathogenic mechanisms and pathways in LGMD will suggest novel therapeutic
approaches and future clinical trials. In addition, therapeutic approaches of gene and
cell delivery into animal models show promising results that will be translated into clinical
trials.

Summary

The genetic diagnosis of LGMD from the present home-made algorithms will move
toward high-throughput diagnostic strategies based on next-generation sequencing
(NGS) technologies. As therapy, new powerful drug approaches based on recent
pathogenetic findings will be pushed to clinical trials. In addition, novel more efficient

and safer viral vectors for gene delivery will be proposed.
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Introduction

The term limb girdle muscular dystrophy (LGMD)
broadly defines a progressive weakness that begins from
the proximal limb muscles, due to a genetic defect that is
distinct from the X-linked dystrophinopathy. The dis-
ease 1s not congenital, with the age at onset of symptoms
varying from early childhood to late adulthood [1]. The
progression of muscle wasting is usually symmetric, with
a variability among individuals and genetic subtypes.
Before considering the diagnosis of LGMD [2], other
conditions need to be excluded, such as facioscapulo-
humeral muscular dystrophy, dystrophinopathies, myo-
tonic dystrophy, and metabolic myopathies. The milder
the symptoms are, the more difficult is the diagnosis.
MRI may be helpful to characterize the severity and
pattern of muscle involvement [3°].

Muscle biopsy shows a diffuse variation in fiber size,
necrosis, regeneration, and fibrosis, but the degree of
these factors is variable and does not parallel the clinical
severity. On the basis of the histological features alone,
there is little, if any, possibility of diagnosing an LGMD
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or a specific LGMD form, but it is possible to discrimi-
nate LGMD from inflammatory myopathy, myofibrillar
myopathy, or neurogenic atrophy.

Classification

The primary distinction is between the autosomal domi-
nant (LGMDI1, Table 1) and the autosomal recessive
forms (LGMD2, Table 2), with a progressive alphabetical
letter indicating the order of gene mapping [4]. There are,
however, about one third of LGMD patients without any
genetic classification. According to the discase mechan-
isms, the LGMDs may be grouped as follows: dystrophin—
dystroglycan complex defects LGMD2CDEFIKMNOP;
membrane defects LGMDI1C, LGMD2BL,; enzymatic
LGMD2AH; sarcomeric LGMD1A, LGMD2G]J; and
nuclear lamina LGMD1B.

LGMD1

Eight LGMDL1 loci have so far been identified, but the
heterogeneity is expected to be greater (Table 1). The
LGMD1 forms have an adult-onset and are milder,
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winging, weakness of the hip adductors, involvement of
the posterior thigh muscles, and joint contractures [20]; a
spectrum of variable phenotypes, often misdiagnosed
[13,21], ranging from a common asymptomatic hyper-
CKemia to inflammatory disorders of muscle with eosi-
nophilic infiltrates [22] or Becker muscular dystrophy
(BMD)-like phenotypes. Eosinophils can be found in
LGMD2A [23], but also in LGMD2C [24].

Western blot analysis is currently the ‘gold standard’ to
identify LGMDZ2A. Loss of all CAPN3 bands by 2C4
(exon 1) and 12A2 (exon 8) [25] antibodies is specific, but
the sensitivity is incomplete, because some LGMD2ZA
patients may retain normal amounts of nonfunctional
protein [26]. CAPN3 may be reduced in amount in other
LGMDs (e.g. LGMD2B [27] and 2] [28]) as a secondary
effect. By immunohistochemistry, the complete absence
of the 2C4 signal is 100% specific for LGMD2A [29].
Mutation detection is usually carried out by DNA
analysis of all exons, but some intronic splice mutations
can be overlooked [30] and heterozygous deletions [31]
missed. The sensitivity is much higher by adding mRNA
testing [32]. In this case also there is a problem of
specificity, because many missense mutations await
experimental proof of pathogenicity.

LGMD2B (dysferlin)

LGMD2B is caused by mutations in the dysferlin
(DYSF) gene that is the second form in order of
frequency (about 15-25%) in many geographical areas
[10,15,33], but not everywhere [11]. Dysferlin is a ubi-
quitous 230kDa transmembrane protein involved in
calcium-mediated sarcolemma resealing [34]. Although
muscle inflammation is widely recognized in dysferlino-
pathy and dysferlin is expressed in immune cells, the
contribution of the immune system to the pathology
remains obscure.

DYSF mutations are associated with heterogeneous
clinical pictures ranging from severe functional disability
to mild late-onset forms [35,36]. About 25% of cases are
clinically misdiagnosed as having polymyositis [37]. The
same mutations also cause Miyoshi myopathy (MM1)
[38] and distal myopathy with anterior tibialis onset
(DMAT), but mixed phenotypes are possible. This
classification into separate phenotypes does not reveal
true disease differences [39].

Typical features of LGMD2B are: early adult onset; high
serum creatine kinase (CK), higher than in LGMD2A
[40]; prominent inflammatory infiltration; slow pro-
gression; and inability to stand on tiptoes, due to the
weakness of the gastrocnemius and soleus. Fifty-three
percent of the patients were very active and sporty before
the onset of symptoms [41] and this suggests that a

nonpenetrance of DYSF mutations is possible. Regener-
ation seems to be attenuated [42].

Western bloy analysis is very useful and specific, when
less than 20% level of dysferlin has been identified [43°],
although dysferlin can be also increased [35] or seconda-
rily reduced [27]. Genetic testing is laborious for the huge
number of exons to be screened and the lack of muta-
tional hot spots. mRNA analysis is also reliable from
monocytes, albeit with some splice differences [44].

LGMD2C (gamma-sarcoglycan), LGMD2D
(alpha-sarcoglycan), LGMD2E
(beta-sarcoglycan), and LGMD2F
(delta-sarcoglycan)

Mutations in any of the four sarcoglycan genes (sarcogly-
canopathies) constitute about 10-15% of all LGMD2s
[1,4,45], but 68% of the severe forms [46]. LGMD2D is
the most prevalent form, but LGMD2C is common in the
Maghreb and India [47] for the high allele frequency of
525delT" and in gypsies for the C283Y allele [48]. The
sarcoglycans are N-glycosylated transmembrane proteins
that form a heterotetrameric complex linked to the
dystrophin—dystroglycan complex [45].

The clinical picture of the sarcoglycanopathies is hetero-
geneous with both severe and mild forms that are also
found in the same families [49]. In general, the disease is
more severe and rapid than in the other LGMDs. The
typical form has a childhood onset that resembles the
intermediate forms of Duchenne/Becker muscular dys-
trophies usually with quadriceps muscle wasting. Cardio-
myopathy may occur in all forms [50,51], rarely in
LGMD2D. In animal models, the delta sarcoglycan
mutations are associated with cardiomyopathy [52,53].
Restrictive lung disease and hypoventilation often
require ventilatory assistance. Diagnosis may be made
by Western blot or on section by immumofluorescence.
LGMDZE and LGMD?2F patients show most frequently
the absence of the mutated and the secondary absence of
nonmutated sarcoglycans, whereas LGMD2C patients
may show the absence of gamma-sarcoglycan together
with traces of the other nonmutated sarcoglycans. In
LGMD2D cases, there is no rule. This could be
explained by the presence of two other sarcoglycans
(epsilon and zeta) that are nonmuscle homologues of
alpha and gamma sarcoglycan. The genetic analysis is
oriented to genotype common mutations or to sequences
from DNA samples, the exonic regions of a specific
sarcoglycan. More than in other LGMD genes, the sen-
sitivity is lower without muscle mRNA testing and/or
multiplex ligation-dependent  probe amplification,
because some nonobvious splice mutations are missed
together with copy number mutations that are common in
the gamma-sarcoglycan gene [54,55].



LGMD2G (Tcap/telethonin)

Mutations in titin cap (Tcap)/telethonin cause
LGMD2G, one of the rarest forms of LGMD. Tcap
provides links to the N-terminus of titin and other
Z-disc proteins. Patients show adolescence-onset weak-
ness initially affecting the proximal pelvic muscles and
then the distal legs with calf hypertrophy. Recently, a
patient with a homozygous nonsense mutation in the
T'cap gene has been reported presenting with a conge-
nital muscular dystrophy [56]. The Tcap gene has also
been associated with cardiomyopathy [57], whereas com-
mon variants may play a role in genetic susceptibility to
dilated cardiomyopathy [58]. Immunofluorescence and
Western blot assays may show a telethonin deficiency.
Full sequencing testing may be cost-effective in all cases,
because the gene is only composed of two small exons.

LGMD2H (TRIM32)

Mutations in TRIM32 cause LGMD2H, a late-onset
form that accounts for about 3% of LGMD. TRIM32
is a ubiquitous E3 ubiquitin ligase that belongs to a
protein family comprising at least 70 human members
sharing the tripartite motif (TRIM) [59]. The D487N
mutation of TRIM32 was originally identified in the
inbred population of Manitoba Hutterites [60] that
may also show the more severe sarcotubular myopathy
(STM) [61]. Other TRIM32 mutations were then iden-
tified in non-Hutterite LGMD2H patients [62,63].
Recently, two other LGMDZH patients have been
described associated with STM morphotype [64]. In
general, LGMDZH cannot be diagnosed without genetic
studies. DNA sequencing of the unique coding exon is
routinely performed, but in few laboratories. mRNA
analysis is dispensable.

LGMD2I (FKRP), LGMD2K (POMT1), LGMD2M
(fukutin), LGMD2N (POMT2), LGMD20
(POMGnNT1), and LGMD2P (dystroglycan
gene)

Mutations in these genes affect dystroglycan glycosyla-
tion and cause congenital muscular dystrophies, muscle—
eye—brain disease or Walker—Warburg syndrome; how-
ever, some hypomorphic alleles are associated with
LGMD [65,66°°]. The most frequent LGMD gene in
this group is FKRP that causes LGMD?2I [67]. In some
countries (England, Denmark, and Norway [68]),
LGMD?2I is more common than LGMD2A, for the high
carrier frequency of the L2761 allele (1:116), reported
377 times in the Leiden database. LGMD2I with both
L2761 alleles is generally milder than compound hetero-
zygotes [69]. LGMD2I with the 1.2761 allele is a mus-
cular dystrophy that is clinically similar to BMD, with a
late-childhood onset, calf hypertrophy, high serum CK,
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respiratory impairment, and cardiomyopathy that can also
prevail [70,71]. A mild cognitive impairment of executive
functions and visuo-spatial planning with aspecific MRI
findings has been reported [72]. Myoglobinuria and myal-
gia following exercise may be common [73]. The prin-
cipal diagnostic tool is the immunostaining of muscle that
reveals a significantly reduced signal with antibodies
recognizing the glycosylated epitopes of alpha dystrogly-
can. There is a correlation between the reduced alpha
dystroglycan staining and clinical course in individuals
with mutations in POMT1, POMT2, and POMGNT1,
but this is not always the case in FK'TN and FKRP gene
mutations [74].

Recently, Hara e a/. [75°°] have reported a missense
mutation in the dystroglycan gene in an LGMD patient
with cognitive impairment. This substitution interferes
with LARGE-dependent maturation of phosphorylated
O-mannosyl glycans on a-dystroglycan affecting its bind-
ing to laminin.

LGMD2]J (titin gene)

A homozygous mutation in the C terminus of titin
(FINmaj 11bp deletion/insertion) causes LLGMD2]
[76]. Titin is the giant sarcomeric protein that forms a
continuous filament system in the myofibrils of striated
muscle, with single molecules spanning from the sarco-
meric Z-disc to the M-band [77]. Other ‘titinopathic’
clinical pictures are tibial muscular dystrophy (TMD,
Udd myopathy) or more severe cardiac and muscular
phenotypes.

CAPN3 binds M-band titin at is7 within the region
affected by the LGMD2] mutations and shows a sec-
ondary deficiency in LGMD2] muscle [28]. Interactions
with titin may protect CAPN3 from autolytic activation
and removal of the CAPN3 protease reverses the titin
myopathology [78].

Identification of the French nonsense mutation
(Q33396X) located in Mex6 seems to cause a milder
phenotype than the typical FINmaj mutation [77]. Due
to the huge gene size, there is limited availability of
genetic tests for titin defects, based on mutation-specific

genotyping.

LGMD2L

Recessive mutations in the putative calcium-activated
chloride channel Anoctamin 5 (ANOS) cause proximal
LGMD2L and distal MMD3 muscular dystrophies
[79°,80,81]. ANOS represents a relatively common cause
of adult onset muscular dystrophy in England, for the
regional prevalence of the ¢.191dupA mutation. Lower
limb involvement is atrophic and often asymmetric, with
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high serum CK, the weakness is generally slowly pro-
gressive. Sequencing of all exons is necessary.

Upcoming molecular diagnoses

It is generally accepted that, after the results from a
biopsy and protein testing, a specific genetic test is
performed to confirm and complete the LGMD diagnosis
[2]. There is, however, the prospect that next-generation
sequencing (NGS)-based targeted exome sequencing
[82°] will reverse this order, making affordable a universal
DNA test that screens for all the neuromuscular disease
genes. In this case many nonpenetrant mutations will
be discovered and the interpretation of the results will be
crucial. Universal tests are already in use for quantitative
mutations, such as large deletions or duplications
[31,43°,83], by custom comparative genomic hybridiz-
ation arrays, such as the neuromuscular disorders chip
or the Motor chip. Whole genome homozygosity mapping
has been proposed for the mapping of consanguineous
cases of LGMD?2 [84,85]. Sequence analysis of mRNA is
required for the diagnosis of more than 10% of mutations,
as deep intronic or elusive exonic variations may disrupt
the correct splicing: this requires a muscle biopsy, even if
mRNA may be used from blood (only LGMD2A,B) or
perioral muscle fibers (skin biopsy) [86].

Upcoming therapies

Treatment of LGMD remains palliative and supportive.
Physiotherapy to prevent joint deformities and promote
walking is recommended. A passive stretching physical
therapy programme should be instituted early, soon after
diagnosis. The use of knee—ankle—foot orthoses at bed-
time is recommended to prevent contractures.

The benefit of steroids has been reported in some types
of LGMD, including LGMD2D [87], LGMD2I [88],
and LGMD2L [89]. A double-blind, placebo-controlled
study of deflazacort in LGMD2B/Miyoshi myopathy is in
progress (http://clinicaltrials.gov).

An alpha-sarcoglycan gene expression in two of three
LGMD2D subjects was obtained for 6 months by adeno-
associated virus-mediated (AAV) gene transfer to the
extensor digitorum brevis muscle [90°,91]. Although a
systemic AAV gene therapy is effective in terms of
extending lifespan in animal models [92], there are still
many barriers for human treatment, including immuno-
logical complications, challenges in producing sufficient
material for treatments, and difficulties in delivery to
muscles throughout the body.

Similarly to the molecular therapy of Duchenne muscular
dystrophy, the problem with the dysferlin gene is its huge
size [93]. To overcome the size limitation, exon skipping

has been proposed as a method to by-pass dysferlin
mutations [94] or the set up of a functional mini-dysferlin
[93,95], or dual AAVs [96]. Genetic ablation of the comp-
lement factor C3 has mitigated the phenotype in dysfer-
lin-deficient mice [97°]. Complement-mediated muscle
injury may be relevant to the pathogenesis of dysferlino-
pathy. This suggests the complement system as a candi-
date for therapeutic target. Recently, it has been shown
that intra-arterial injection of wild-type mesoangioblasts
is able to colonize the dystrophic muscles and restore
dysferlin expression in SCID/BIA] mice [98].

Conclusion

Advances in the knowledge of LGMDs have been made
and 24 different LGMDs have been so far recognized.
Next generation sequencing technologies promise a revo-
lution in diagnostics and characterization of additional
LGMD genes. Novel systemic therapies that have been
effective in the different animal models will be translated
into clinical trials.
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